a post with vega lite

This is an example post with some vega lite code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
```vega_lite
{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
  "description": "A dot plot showing each movie in the database, and the difference from the average movie rating. The display is sorted by year to visualize everything in sequential order. The graph is for all Movies before 2019.",
  "data": {
    "url": "https://raw.githubusercontent.com/vega/vega/main/docs/data/movies.json"
  },
  "transform": [
    {"filter": "datum['IMDB Rating'] != null"},
    {"filter": {"timeUnit": "year", "field": "Release Date", "range": [null, 2019]}},
    {
      "joinaggregate": [{
        "op": "mean",
        "field": "IMDB Rating",
        "as": "AverageRating"
      }]
    },
    {
      "calculate": "datum['IMDB Rating'] - datum.AverageRating",
      "as": "RatingDelta"
    }
  ],
  "mark": "point",
  "encoding": {
    "x": {
      "field": "Release Date",
      "type": "temporal"
    },
    "y": {
      "field": "RatingDelta",
      "type": "quantitative",
      "title": "Rating Delta"
    },
    "color": {
      "field": "RatingDelta",
      "type": "quantitative",
      "scale": {"domainMid": 0},
      "title": "Rating Delta"
    }
  }
}
```

Which generates:

{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
  "description": "A dot plot showing each movie in the database, and the difference from the average movie rating. The display is sorted by year to visualize everything in sequential order. The graph is for all Movies before 2019.",
  "data": {
    "url": "https://raw.githubusercontent.com/vega/vega/main/docs/data/movies.json"
  },
  "transform": [
    {"filter": "datum['IMDB Rating'] != null"},
    {"filter": {"timeUnit": "year", "field": "Release Date", "range": [null, 2019]}},
    {
      "joinaggregate": [{
        "op": "mean",
        "field": "IMDB Rating",
        "as": "AverageRating"
      }]
    },
    {
      "calculate": "datum['IMDB Rating'] - datum.AverageRating",
      "as": "RatingDelta"
    }
  ],
  "mark": "point",
  "encoding": {
    "x": {
      "field": "Release Date",
      "type": "temporal"
    },
    "y": {
      "field": "RatingDelta",
      "type": "quantitative",
      "title": "Rating Delta"
    },
    "color": {
      "field": "RatingDelta",
      "type": "quantitative",
      "scale": {"domainMid": 0},
      "title": "Rating Delta"
    }
  }
}

This plot supports both light and dark themes.




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Batch RL vs. Offline RL
  • Offline RL vs. Offline IL
  • Imitation Learning (모방 학습)
  • Copycat 문제
  • Enhancing Safety via Deep Reinforcement Learning in Trajectory Planning for Agile Flights in Unknown Environments
  • RMA: Rapid Motor Adaptation for Legged Robots
  • Quantum Virtual Link Generation via Reinforcement Learning
  • UDC
  • A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
  • a post with tabs2