a post with geojson

This is an example post with some geojson code. The support is provided thanks to Leaflet. To create your own visualization, go to geojson.io.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
```geojson
{
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "properties": {},
      "geometry": {
        "coordinates": [
          [
            [
              -60.11363029935569,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -2.904625022183211
            ]
          ]
        ],
        "type": "Polygon"
      }
    }
  ]
}
```

Which generates:

{
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "properties": {},
      "geometry": {
        "coordinates": [
          [
            [
              -60.11363029935569,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -3.162613728707967
            ],
            [
              -59.820894493858034,
              -2.904625022183211
            ],
            [
              -60.11363029935569,
              -2.904625022183211
            ]
          ]
        ],
        "type": "Polygon"
      }
    }
  ]
}



Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Batch RL vs. Offline RL
  • Offline RL vs. Offline IL
  • Imitation Learning (모방 학습)
  • Copycat 문제
  • Enhancing Safety via Deep Reinforcement Learning in Trajectory Planning for Agile Flights in Unknown Environments
  • RMA: Rapid Motor Adaptation for Legged Robots
  • Quantum Virtual Link Generation via Reinforcement Learning
  • UDC
  • A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
  • a post with tabs2